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Abstract

Emerging mobile services heavily utilize Neural Networks

(NNs) to improve user experiences. Such NN-assisted ser-

vices depend on fast NN execution for high responsiveness,

demanding mobile devices to minimize the NN execution

latency by efficiently utilizing their underlying hardware

resources. To better utilize the resources, existing mobile

NN frameworks either employ various CPU-friendly opti-

mizations (e.g., vectorization, quantization) or exploit data

parallelism using heterogeneous processors such as GPUs

and DSPs. However, their performance is still bounded by the

performance of the single target processor, so that real-time

services such as voice-driven search often fail to react to

user requests in time. It is obvious that this problem will be-

come more serious with the introduction of more demanding

NN-assisted services.

In this paper, we propose µLayer, a low latency on-device

inference runtime which significantly improves the latency

of NN-assisted services. µLayer accelerates each NN layer

by simultaneously utilizing diverse heterogeneous proces-

sors on a mobile device and by performing computations

using processor-friendly quantization. Two key findings mo-

tivate our work: 1) the existing frameworks are limited by

single-processor performance as they execute an NN layer

using only a single processor, and 2) the CPU and the GPU

on the same mobile device achieve comparable computa-

tional throughput, making cooperative acceleration highly

promising. First, to accelerate an NN layer using both the

CPU and the GPU at the same time, µLayer employs a layer
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distribution mechanism which completely removes redun-

dant computations between the processors. Next, µLayer

optimizes the per-processor performance by making the pro-

cessors utilize different data types that maximize their uti-

lization. In addition, to minimize potential latency increases

due to overly aggressive workload distribution, µLayer se-

lectively increases the distribution granularity to divergent

layer paths. Our experiments using representative NNs and

mobile devices show that µLayer significantly improves the

speed and the energy efficiency of on-device inference by

up to 69.6% and 58.1%, respectively, over the state-of-the-art

NN execution mechanism.
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1 Introduction

Recent advances in Neural Networks (NNs) have made NNs

achieve human-level accuracy on various tasks useful for mo-

bile services (e.g., digit/image recognition [42, 47], language

translation [38]). Using NNs, mobile service providers are

actively developing new services; Google Handwriting In-

put to let users handwrite text on their Android devices [19],

Google Translate to perform real-time visual translations [24],

and YouTube to perform video segmentation [13]. Virtual

assistants, such as Google Assistant and Apple Siri, use NNs

to enable voice-triggered actions [64, 68]. Such diverse use

cases make NNs the key workload of mobile devices toward

richer user experiences.

Traditionally, mobile devices relied on the abundant cloud-

side resources to satisfy the high responsiveness requirement

of the mobile services; however, with the advent of high-

performance mobile System-on-a-Chips (SoCs), it is now

feasible to employ on-device inference which executes the en-

tire NN using only the underlying hardware resources. Since

the high responsiveness is a key requirement of the mobile

services, mobile NN frameworks should efficiently exploit

the underlying hardware resources to minimize inference
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latency. To reduce the latency, existing frameworks employ

CPU-friendly optimizations (e.g., 8-bit quantized integers,

vectorization) or utilize heterogeneous computing resources

such as Graphics Processing Units (GPUs) [32, 43, 46]. Some

recent studies [43, 55, 56] further reduce the latency by exe-

cuting each NN layer on different computing resources.

By better exploiting the hardware resources, it is now

possible to achieve near-real-time responsiveness for rela-

tively simple NNs (e.g., automatic e-mail responses [61]).

Unfortunately, a majority of the real-time services still rely

on the cloud as the reduced latency is still not low enough

to fulfill their high performance demands. For instance, to

achieve fast response times, practically all virtual assistants

still offload the execution of their speech recognition NNs

to the cloud instead of executing them on-device. But, now

with the various computing resources available on modern

high-end SoCs, we believe that fast and accurate on-device

inference is feasible.

In this paper, we propose µLayer, a low latency on-device

inference runtime using cooperative single-layer acceleration

which executes a single NN layer using all of the available

hardware resources. µLayer stems from two key findings:

1) the performance of the existing frameworks is limited by

the single-processor performance as they execute an NN

layer using only a single processor, and 2) the performance

of the CPU and the GPU, the two most prevalent types of

processors on mobile devices, is well-balanced. The first

finding reveals that the existing frameworks fail to fully

exploit the underlying hardware resources, and thus their

performance is non-optimal. The second finding infers the

high potential of cooperative single-layer acceleration; if the

performance of one processor dominates those of the other

processors, the multi-processor management overheads (e.g.,

memory synchronization) would easily offset the potential

improvements. But, this is not the case for mobile devices.

To implement µLayer, we first propose channel-wise work-

load distribution which makes different computing resources

process the disjoint sets of the output channels of an NN

layer. By doing so, the channel-wise workload distribution

incurs no redundant computation between the computing

resources. Then, we propose processor-friendly quantization

which makes CPUs and GPUs utilize different data types to

maximize the per-processor performance when executing

their portions of an NN layer. It exploits the native hardware

support for the data types and NNs’ ability to sustain their

accuracy with fewer-bit values. Specifically, the processor-

friendly quantization instructs the CPU to use 8-bit linear-

quantized integers [37] and the GPU to use 16-bit floating

point values (i.e., half data type in OpenCL) instead of the

default 32-bit floating point values. After that, we propose

branch distribution which exploits divergent data-parallel

branches within an NN to further reduce the latency. By

exploiting the data parallelism between the branches, we
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Figure 1.Multi-layer structure of NNs and

the operations of a convolutional layer

can increase the utilization of both the CPU and the GPU to

further reduce the inference latency.

µLayer incorporates the three mechanisms to accelerate

on-device inference. Our experiments using modern SoCs

and representative NNs show that µLayer greatly improves

the speed by up to 59.9% and 69.6% on representative high-

end and mid-range mobile SoCs, respectively, over the state-

of-the-art CPU-GPU cooperative NN execution mechanism

which distributes NN layers to the CPU and the GPU. µLayer

also improves the energy efficiency by up to 58.1% and 57.2%

on the high-end and the mid-range SoCs, respectively, over

the state-of-the-art. These results clearly indicate that µLayer

is highly effective in minimizing not only the latency, but

also the energy consumption of NN execution.

In summary, the contributions of this paper are:

• Identification of the High Potential of Cooperative

Single-Layer Acceleration.We show that the CPUs and

the GPUs on modern mobile SoCs achieve well-balanced

throughput, and then explore the acceleration of a sin-

gle NN layer using both the CPU and the GPU. To the

best of our knowledge, this work is the first to propose

cooperative single-layer acceleration for mobile SoCs.

• Novel Cooperative Single-Layer Acceleration Mech-

anisms. By optimizing the NN execution from different

aspects, our three cooperative single-layer acceleration

mechanisms successfully minimize the latency, reducing

the latency by up to 69.6% over the state-of-the-art.

• Design & Implementation of µLayer. We propose an

optimized mobile NN framework named µLayer which

minimizes the NN execution latency. We present its de-

sign and implementation-wise optimizations to mitigate

processor management overheads (e.g., GPU command

issuing, CPU-GPU memory synchronization).
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2 Background

2.1 Neural Networks

Neural Networks (NNs), inspired by the way biological ner-

vous systems process information, are capable of learning

how to perform tasks without task-specific procedures or

rules [51]. Within an NN, artificial neurons are connected to

each other, and each inter-neuron connection is associated

with a weight. Each neuron multiplies the signals (typically

real numbers) by the weights of the associated connections,

applies some non-linear function on the sum of the multi-

plication outputs, and then transmits the output to other

neurons. In practice, training an NN refers to the process

of adjusting the weights in a way that improves the accu-

racy of the NN. Among various types of NNs, we focus on

Convolutional NNs (CNNs) as they are widely used across a

large number of mobile services. We also focus on inference

rather than training as training is mostly done offline.

A CNN consists of layers which perform different opera-

tions on a given input (Figure 1a). The intermediate outputs

are typically three-dimensional neurons whose dimensions

represent channels, height, and width. The layers, aimed at

extracting spatially local features, are often grouped into

three types: convolutional, fully-connected, and pooling.

Convolutional & Fully-Connected Layers. A convolu-

tional layer computes the dot products between spatially

local input neurons and filters, which extend through all

input channels, across the width and height of input. Then,

the layer accumulates biases to the dot products and applies

an optional activation function, e.g., Rectified Linear Unit

(ReLU), to the accumulated values. Figure 1b shows the op-

erations of a convolutional layer which produces oc output
channels from an ic-channel input. To produce an output

channel, the layer applies a k ×k × ic filter to each k ×k × ic
spatially local input neurons; repeating this process for oc
filters produces oc output channels. A Fully-Connected (FC)

layer establishes full connections between input and output

neurons, and can be transformed into a convolutional layer

whose number of output channels matches the number of

the FC layer’s output neurons.

Pooling Layer. A pooling layer reduces the spatial size of

the input by applying a global function (e.g., max, average)

to spatially local input neurons. It differs from convolutional

layers as no filters are involved in its operations and the

global function does not extend through all input channels.

Thus, the number of output channels equals to the number

of input channels.

2.2 On-Device Inference

On-device inference refers to the execution of NNs using

only the hardware resources available on a mobile device

(Figure 2c). As no data is sent outside a mobile device and an

internet connection is unnecessary, on-device inference can

improve security, can withstand internet disconnections, and

has potential to improve responsiveness by avoiding high

wireless network delays. Traditionally, mobile devices relied

on cloud-side servers for executing all (Figure 2a) or some

(Figure 2b) NN layers as the hardware resources on the de-

vices could not provide sufficient computational throughput;

however, as recent mobile SoCs are equipped with diverse

computing resources (Figure 3) such as CPUs, GPUs, and

Domain-Specific Processors (DSPs), on-device inference has

become a promising option over the conventional cloud-

assisted inference.

Depending on how a mobile NN framework executes the

layers of an NN, the NN execution mechanisms of on-device

inference can be classified into network-to-processor mapping

and layer-to-processor mapping.

Network-to-ProcessorMapping.The frameworks employ-

ing this mechanism (e.g., MCDNN [28]) distribute the execu-

tion of an NN on multiple inputs to different processors. For
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Figure 5. Per-layer execution latency of VGG-16 on the CPUs and the GPUs of modern SoCs

example, such frameworks would run an image classification

NN on the CPU for the first input image and on the GPU

for the second input image (Figure 4a). The frameworks im-

prove throughput by utilizing both the CPU and the GPU to

process multiple inputs in parallel; however, the single-input

latency gets bounded by the single-processor performance

as each input is processed by a single processor.

Layer-to-Processor Mapping. This mapping can reduce

the single-input latency by distributing the execution of NN

layers to different processors (Figure 4b). The frameworks

using this mapping (e.g., DeepX [43]) would execute each

layer on the processor achieving lower latency. By distribut-

ing layers, not inputs, the single-input latency can become

lower than that of the network-to-processor mapping. Un-

fortunately, the single-input latency is still bounded by the

single-processor performance as each layer is still processed

by a single processor.

3 Cooperative Single-Layer Acceleration

As discussed in Section 2.2, the existing mobile NN frame-

works utilize only a single processor to execute an NN layer,

and bound their performance by the single-processor per-

formance. To further reduce the latency by fully exploiting

the underlying hardware resources, we propose cooperative

single-layer acceleration which accelerates a single NN layer

using both the CPU and the GPU, the two most prevalent

processors on mobile SoCs, at the same time (Figure 4c).

With the cooperative single-layer acceleration, the overall

throughput becomes the sum of the CPU’s and the GPU’s

throughput.

3.1 High Latency Improvement Potential

For our cooperative single-layer acceleration to be highly

effective, the CPU and the GPU should achieve similar per-

layer execution latency and throughput. Otherwise, the over-

heads associated with multi-processor management (e.g.,
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Figure 6. NN execution latency on modern SoCs

GPU command issuing, CPU-GPU memory synchroniza-

tion) would easily offset the speed improvements. To iden-

tify whether this is the case for mobile SoCs, we profile the

per-layer execution latency of VGG-16 [42] on two represen-

tative SoCs: Samsung Exynos 7420 [7] and Exynos 7880 [8].

Exynos 7420 represents high-end SoCs used by flagship

smartphones; it is equipped with heterogeneous CPU cores,

four high-performance cores (bCs) and four energy-efficient

cores (LCs), and eight GPU cores (GCs). On the other hand,

Exynos 7880 is equipped with eight LCs and three GCs, and

is primarily used bymid-range smartphones. We utilize ARM

Compute Library [5], which provides optimized NN layer

implementations for ARM CPU and GPU cores, to execute

the layers.

Our experiment using VGG-16 and the two SoCs shows

that the CPUs and the GPUs achieve similar per-layer la-

tency (Figure 5), inferring the high potential of the coop-

erative single-layer acceleration. On the high-end SoC, the

GPU achieves an average speedup of only 1.40× over the

CPU. Moreover, on the mid-range SoC, the octa-core CPU

achieves 26.1% lower latency than the triple-core GPU. Such

results are due to the fact that mobile GPUs primarily aim

energy efficiency rather than throughput unlike server- and

desktop-class GPUs. To verify whether the results also hold

for other NNs, we perform a similar experiment using four

additional representative NNs. The results draw a similar

conclusion (Figure 6), showing that the cooperative single-

layer acceleration has high potential across diverse NNs.

3.2 Channel-Wise Workload Distribution

Now that the cooperative single-layer acceleration has high

potential, mobile NN frameworks should distribute the com-

putation of a single NN layer to the CPU and the GPU in

a way that maximizes the performance gains. For the pur-

pose, we propose channel-wise workload distribution which

ic

iw

ih

(1-p) oc

p oc

Conv

Conv

Input Output

oc

Filters
(1-p) oc

p oc

(a) Convolutional and FC layers

ic

iw

ih

(1-p) ic

p ic

Pool

Pool

Input Output

oc

(1-p) oc

p oc

(b) Pooling layer

Figure 7. Channel-wise workload distribution of a layer

makes the CPU and the GPU process disjoint sets of output

channels. Splitting the workload in terms of output chan-

nels maximizes the performance gains by not incurring any

redundant computation between the CPU and the GPU.

Figure 7 shows how the cooperative single-layer accelera-

tion operates with the channel-wise workload distribution.

We assume that the output channels of an NN layer is dis-

tributed to the CPU and the GPU in a ratio of p : (1−p). First,
for convolutional and FC layers, the filters are distributed,

but the input data is shared as the filters extend through all

the input channels (Figure 7a). Using the distributed filters

and the shared input data, the CPU and the GPU generate

their portions of the output channels. The generated output

channels are then merged to form the complete output data.

As the filters are distributed without any overlaps, no re-

dundant computation between the CPU and the GPU exists.

Second, for pooling layers, the input data is distributed as

the global function is applied spatially, not across channels

(Figure 7b). Then, the CPU and the GPU perform pooling on

their portions of the input data and generate their portions

of the output data. After that, the output data are merged.

Similar to the case of convolutional and FC layers, no redun-

dant computation occurs as the CPU and the GPU operate

on completely disjoint sets of input data.

4 Processor-Friendly Quantization

The channel-wiseworkload distribution efficiently distributes

the workload of an NN layer to both the CPU and the GPU in

a way no redundant computation occur. Now that the work-

load is distributed, we seek to reduce the latency further by

optimizing the per-processor performance.

4.1 Quantization

To maximize the utilization of CPUs and GPUs, prior studies

propose to employ quantization which shrinks the default

32-bit single-precision floating-point values (F32) of NNs to
occupy fewer bits through some transformations. Reducing



EuroSys ’19, March 25–28, 2019, Dresden, Germany Y. Kim et al.

CPU w/ F32 CPU w/ QUInt8 GPU w/ F32 GPU w/ QUInt8 GPU w/ F16

0.0

0.5

1.0

1.5
N

or
m

al
iz

ed
 L

at
en

cy

(a) High-end (4 bCs + 8 GCs)

0.0

0.5

1.0

1.5

2.0

2.5

(b) Mid-range (8 LCs + 3 GCs)

Figure 8. Impacts of quantization on inference latency; normalized to the latency of the CPU with F32.

the bit width can greatly improve not only the speed but also

the energy efficiency which is an important performance

metric for mobile devices. Because of its advantages, mo-

bile NN frameworks typically employ quantization when

executing an NN [10, 28, 44].

To optimize the per-processor performance, we consider

two quantization schemes: 16-bit half-precision floating-

point values (F16) [35] and 8-bit linear quantization involv-

ing 8-bit integer values (QUInt8) [37]. The two schemes were

chosen with an expectation that both CPUs and GPUs can

greatly benefit from the data types using their native Arith-

metic Logic Units (ALUs); GPUs are optimized for graphics

applications which heavily utilize floating points (e.g., F16),
and CPUs are equipped with vector ALUs capable of pro-

cessing multiple 8-bit integers (e.g., QUInt8) in parallel.

Half-Precision Floating-PointValues (F16). F16 expresses
real numbers using 16 bits instead of 32 bits. It does so by

reducing the numbers of exponent and significand bits of

F32 by 3 and 13, respectively. Employing F16 transforms all

arithmetic operations to use 16 bits, not 32 bits.

8-Bit Linear Quantization (QUInt8). Linear quantization
maps 32-bit F32 values to fewer-bit representations through

linear scaling. Specifically, 8-bit linear quantization maps a

set of F32 values to 8-bit unsigned integers (QUInt8) where 0
and 255 map to the minimum and the maximum F32 values,

respectively. By doing so, values not only shrink to a quar-

ter the size, but also become integers which achieve higher

throughput than floating-point values. As a side effect, linear

quantization requires requantization, the process of convert-

ing 32-bit integers back to 8-bit ones [37]. This is because

multiplying two 8-bit integers produces a 16-bit integer, and

accumulating those 16-bit integers needs a 32-bit integer

when executing convolutional and FC layers.

Figure 8 shows the reduction in the NN execution latency

when the two quantization methods are applied. The results

indicate that quantization is beneficial to both the CPU and

the GPU; however, the processors favor different quanti-

zation mechanisms. First, GPUs greatly benefit from F16
as GPUs have native hardware support for achieving high-

throughput floating-point operations. On the other hand,

the latency tends to increase with QUInt8 due to the accu-

mulation of 16-bit integers using a 32-bit integer; operating

on 32-bit values reduces concurrency by half compared to

16-bit-only operations. Second, CPUs greatly benefit from

QUInt8 but not from F16. The reasons turn out to be 1) the

lack of vector ALU support for F16 in the CPUs we evalu-

ated, and 2) the supported vector widths for QUInt8 is much

wider than those of floating-point values. The CPU cores

we evaluated lack native vector ALU support for F16, so
they are forced to emulate F16 using F32; however, as F32
is the default data type for NNs, no performance difference

can be observed. Even in the presence of native hardware

support for F16 values, QUInt8 can still provide higher per-

formance due to its fewer bit width; two QUInt8 operations

can run in parallel using the bit width required for a single

F16 operation.

4.2 Maximizing Per-Processor Throughput

Motivated by the experimental results, we propose processor-

friendly quantization which makes the CPU and the GPU

perform arithmetic operations using their preferred quan-

tization schemes. The processor-friendly quantization or-

chestrates the CPU and the GPU to perform calculations

using 8-bit QUInt8 integers and 16-bit F16 values, respec-

tively. Aimed at minimizing both the latency and the energy

consumption of moving the data between the cores and the

memory, which is a major energy consumer on mobile de-

vices [14, 60], the processor-friendly quantization works as

follows. First, all input, filter, and output data are stored as

QUInt8 to minimize the size of data movement between the

cores and the memory. Second, for the CPU cores, the 8-bit
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integers are processed as is using their vector ALUs (Fig-

ure 9a). Third, the GPU cores load the input and the filters as

QUInt8, but process them as F16 by converting the integers

on-the-fly (Figure 9b). By doing so, the GPU cores can ex-

ploit their native hardware support for F16 to minimize the

latency. When storing the output back to the memory, both

the CPU and the GPU requantize the output back to QUInt8
using the pre-trained quantization information. The informa-

tion can be obtained by learning the quantization range of

the output during training [37]. Using the processor-friendly

quantization, we can further reduce the single-layer latency

by maximizing the per-processor performance.

4.3 Impacts on Inference Accuracy

Although NNs are known to sustain high inference accuracy

with fewer-bit data types [26], whether the quantization

mechanisms which the processor-friendly quantization uti-

lizes also sustain accuracy remains as a valid concern. To

validate that the accuracy remains high with the processor-

friendly quantization, we conduct an experiment with var-

ious NNs [29–31, 36, 63, 63, 65–67] known to achieve high

inference accuracy for the ImageNet dataset [62]. For the

experiment, we extend TensorFlow-Slim [25] to generate

F16 and QUInt8 versions of the NNs.
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Figure 10 shows how the top-5 inference accuracy of the

NNs differs when quantization is applied. The results show

that employing QUInt8 can incur a considerable accuracy

loss for some NNs, e.g., 50.7 percentage points (%p) with

Inception-v4. To prevent the large accuracy losses, we re-

train the NNs to be aware of the 8-bit linear quantization

by inserting TensorFlow’s fake quantization operations [37].

The inserted operations greatly improve the accuracy of

the linear-quantized NNs (QUInt8+FakeQuant), limiting the

maximum accuracy loss to 2.7%p. The results show that

the accuracy loss of the processor-friendly quantization to

be marginal; the accuracy gets bounded by the fewer-bit

data type (i.e., QUInt8), and the maximum accuracy loss of

QUInt8 is only 2.7%p. Note that prior studies often allow

larger accuracy losses to improve performance (e.g., Deep-

Mon [33] incurs 5–6% accuracy losses).

5 Branch Distribution

The channel-wise workload distribution and the processor-

friendly quantization maximize the multi-processor perfor-

mance and the per-processor performance, respectively. Al-

though the two optimizations significantly reduce the la-

tency, a recent trend in NNs toward reducing the amount of

per-layer computation may limit their potential; the reduced

amount of computation may not be large enough to fully

benefit from the cooperative single-layer acceleration.

Some recent NNs (e.g., GoogLeNet) consist of branches

which perform different sequences of operations on the same

input data. In case of GoogLeNet, the keymotivations to have

the branches are: the input data to an NN (e.g., an image)

can have an extremely large variation in size, increasing the

number of layers is prone to overfitting, and naïvely stacking

large convolutional layers is computationally expensive [66].
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Figure 12. Potential latency benefits of branch distribution

To resolve the issues, GoogLeNet employs the Inception

module which performs convolutions having different filter

sizes and pooling on the same input data in parallel, and then

concatenates the outcomes along the channel dimension

(Figure 11a). Such branches can be seen often in other recent

NNs as well, e.g., the Fire module of SqueezeNet (Figure 11b).

We find that such branches can make the channel-wise

workload distribution achieve sub-optimal performance. The

reason is that the channel-wise workload distribution always

executes each NN layer using both the CPU and the GPU,

incurring high CPU-GPU synchronization overheads. Ac-

cordingly, the latency of different branches, which can be

hidden by running the branches in parallel, gets exposed.

Figure 12 illustrates an example scenario where the channel-

wise workload distribution executes the first Inception mod-

ule of GoogLeNet on the high-end SoC. Due to the small

filter sizes of the convolutional layers and that the layers

are executed in a serialized manner, the channel-wise work-

load distribution with the processor-friendly quantization

(Cooperative) improves the speed by 52.1% over CPU-only

inferencewith the 8-bit linear quantization (CPU-Only). How-
ever, if we assign branches 0 and 1 to the CPU and branches

2 and 3 to the GPU, i.e., Cooperative (Optimal), the execu-
tion latency becomes 6.3 ms, achieving a speed improvement

of 63.4%. The results indicate that the branches whose la-

tency can be hidden by executing them in parallel should be

considered to minimize the latency.

To exploit such branches to further reduce the latency,

we propose branch distribution which 1) identifies a set of

parallelizable branches, and 2) executes the branches in par-

allel by assigning them to the CPU and the GPU. By doing

so, the branch distribution allows parallel execution of di-

vergent branches, expanding the optimization coverage of

the channel-wise workload distribution and the processor-

friendly quantization.

NN Partitioner

NN Executor

CPU GPU

Layer

Latency
Predictor

Neural Network Filters

Figure 13. µLayer runtime architecture

In order to derive the optimal branch-to-processor map-

ping, the branch distribution utilizes the per-processor ex-

ecution latency of a branch. For example, to distribute the

four branches of the Inception module, the branch distri-

bution first collects the CPU- and the GPU-only execution

latency of the four branches. Then, for a possible branch-

to-processor mapping (e.g., branches 0 and 1 to the CPU

and branches 2 and 3 to the GPU), the branch distribution

estimates the total execution latency by calculating the sum

of the per-processor, per-branch execution latency (i.e., the

sum of the CPU-only execution latency of branches 0 and

1, and the sum of the GPU-only execution of branches 2

and 3). After estimating the execution latency of all possi-

ble branch-to-processor mappings, the branch distribution

selects the mapping which incurs the lowest latency as the

optimal mapping. Note that the branch distribution does

not involve the channel-wise workload distribution; all the

layers of a branch get executed on a single processor.

6 Implementation

In this section, we describe µLayer, a software runtime for

mobile NN execution frameworks implementing the channel-

wide workload distribution, the processor-friendly quantiza-

tion, and the branch distribution. µLayer analyzes a given

NN, applies the proposed optimizations to the NN, makes

an execution plan for the NN, and executes the layers ac-

cording to the execution plan. µLayer assumes that the 8-bit

linear quantization is already applied to the given NN; ex-

isting tools (e.g., TensorFlow’s fake quantization [37]) can

transform non-quantized NNs into linear-quantized ones.

µLayer consists of three components: an NN partitioner, a

latency predictor, and an NN executor (Figure 13). The NN

partitioner is responsible for generating a cooperative execu-

tion plan. For each NN layer, the NN partitioner decides the

split ratio p (0 ≤ p ≤ 1) for the channel-wise workload distri-

bution. In our implementation, the NN partitioner considers

p values of 0.75, 0.5, and 0.25. The NN partitioner refers to

the latency predictor to identify the optimal p value. Given
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Figure 14. µLayer-augmented mobile NN framework

the parameters of an NN layer (e.g., input and filter sizes) and

the p value, the latency predictor estimates the execution

latency of the layer. To do so, we extend the performance

prediction model of Neurosurgeon [41] to take p values into

an account. It first estimates the latency of the CPU- and the

GPU-only execution using the logarithmic-based regression

as described in [41]. Then, it scales the estimated latency

with respect to the given p value. After that, the latency pre-

dictor reports the estimated latency to NN partitioner. The

generated execution plan is then sent to NN executor.

The NN executor is responsible for executing the given

NN with respect to the generated execution plan. Upon re-

ceiving the execution plan from the NN partitioner, the NN

executor first uploads the filter values of the NN to CPU and

GPU memory. When uploading the filter values to the GPU

memory, the NN partitioner dequantizes the QUInt8 filter

values to F16 values as the processor-friendly quantization

makes the GPU operate on F16 values. After that, the NN

executor invokes the underlying middleware’s API functions

(e.g., OpenCL commands for the GPU) to execute the layer

with respect to the optimal p value.

Figure 14 shows the software architecture of our exam-

ple µLayer-augmented mobile NN framework. The frame-

work utilizes ARM Compute Library (ACL) [5] and gemm-

lowp [9] as the underlying middlewares. ACL provides API

functions which utilize NEON- and OpenCL-based kernels

optimized for ARM Cortex CPUs and Mali GPUs. The frame-

work mostly utilizes ACL; however, for executing GEner-

alized Matrix Multiplications (GEMMs), a key operation of

convolutional and FC layers, on CPU cores, we use gemm-

lowp instead as it operates on QUInt8 values by default and

provides higher QUInt8 GEMM performance. Note that the

middleware can be chosen by developers according to their

needs. For instance, if the target CPU implements x86 in-

struction set architecture instead of AArch32/64, it would be

desirable to employ Intel Math Kernel Library [1] or AMD

Math Library [6] instead.

HVPM

Smartphones

Figure 15. Our experimental setup to measure

the energy consumption of mobile SoCs

Table 1. Evaluated NNs and our proposals’ applicability

Name Applicability

Ch. Dist. Proc. Quant. Br. Dist.
(Sec. 3.2) (Sec. 4.2) (Sec. 5)

GoogLeNet [66] � � �
SqueezeNet v1.1 [34] � � �

VGG-16 [63] � �
AlexNet [42] � �

MobileNet v1 [31] � �

As the cooperative execution demands multi-processor

management, the associated overheads such as GPU invo-

cation latency may offset the performance benefits. To miti-

gate the overheads, our framework exploits asynchronous

GPU command issuing and shared CPU-GPU memory. First,

the framework maximizes the use of asynchronous GPU

commands to hide the GPU invocation overheads. For in-

stance, when executing a convolutional layer, the frame-

work first issues asynchronous GPU commands, executes

the CPU-side operations, and then waits until the GPU-side

operations are completed. By doing so, the GPU invocation

overlaps with the CPU-side operations, reducing the overall

latency. Second, to avoid high-latency CPU-GPU memory

copies, the framework utilizes the shared CPU-GPU mem-

ory of mobile SoCs. On the SoCs, the CPU and the GPU

share the same physical memory, allowing zero-copy mem-

ory transfers. To eliminate the CPU-GPU memory copies

using zero-copy memory, the framework always allocates

memory buffers through OpenCL’s clCreateBuffer func-
tion with CL_MEM_ALLOC_HOST_PTR flag. Then, during exe-
cution, the framework maps the memory regions the CPU

needs to access using clEnqueueMapBuffer function; input

and output memory regions are mapped with CL_MAP_READ
and CL_MAP_WRITE_INVALIDATE_REGION flags, respectively.

In this way, no unnecessary data copies between the CPU

and the GPU occur, eliminating the CPU-GPU data transfer

overheads. Note that the mapping and the unmapping oper-

ations are also asynchronous; they happen in parallel with

the CPU-side operations.
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Figure 16. NN execution latency of the single-processor mechanism, the layer-to-processor mechanism, and µLayer;

normalized to the latency of the layer-to-processor mechanism.

7 Evaluation

7.1 Experimental Setup

To evaluate the effectiveness of µLayer, we measure the la-

tency and the energy efficiency of our µLayer-augmented

mobile NN framework on two representative modern mobile

SoCs: Samsung Exynos 7420 (of Samsung Galaxy Note 5) and

Samsung Exynos 7880 (of Samsung Galaxy A5). First, Exynos

7420 consists of four high-performance 2.1-GHzARMCortex-

A57 cores, four energy-efficient 1.5-GHz ARM Cortex-A53

cores, and an octa-core 700-MHz ARM Mali-T760 GPU. Its

hardware specification represents the mobile SoCs used by

high-end smartphones. Second, Exynos 7880 represents the

mobile SoCs of mid-range smartphones and consists of eight

1.9-GHz ARM Cortex-A53 CPU cores and a triple-core 962-

MHz ARMMali-T830 GPU. To measure the energy consump-

tion of the mobile SoCs, we utilize the High Voltage Power

Monitor (HVPM) from Monsoon Solutions, Inc. [57]; we de-

tach the batteries from the smartphones, solder wires to them,

and connect the wires to the HVPM as shown in Figure 15.

Table 1 lists the five representative NNs we use for evalua-

tion and whether our proposals can be applied to them. The

NNs represent three different NN classes. First, GoogLeNet [66]

and SqueezeNet v1.1 [34] represent NNs having divergent

branches. Second, VGG-16 [63] and AlexNet [42] represent

early NNs having large filter sizes. Third, MobileNet v1 [31]

represents small-scale NNs aimed at minimizing the amount

of computation. All of the NNs are designed for image clas-

sification, specifically the ImageNet dataset.

7.2 Low NN Execution Latency

In this experiment, we evaluate the speed improvements of

µLayer by comparing the NN execution latency against those

of the single-processor and the layer-to-processor mecha-

nisms. The single-processor mechanism executes an entire

NN on either the CPU or the GPU. We consider all possible

data types (i.e., F32, F16, QUInt8) for the mechanisms. The

layer-to-processor mechanism executes each NN layer on

the processor achieving lower latency. We compare µLayer

against the mechanism using QUInt8, not F32, as using the
integers achieves lower latency. Compared to the two exist-

ing mechanisms, µLayer should reduce the latency as it uses

both the CPU and the GPU to execute a single NN layer.

Figure 16 shows the NN execution latency of the two

mechanisms and µLayer. The results show that µLayer sig-

nificantly improves speed by up to 59.9% (high-end) and

69.6% (mid-range) over the layer-to-processor mechanism

and achieves geometric mean speed improvements of 30.5%

(high-end) and 35.3% (mid-range). Even for VGG-16 on the

high-end SoC, the only case where the single-processor

mechanism is faster than the layer-to-processor mechanism,

µLayer reduces latency by 11.2%. The results clearly indicate

that µLayer effectively reduces the NN execution latency

over the prior mechanisms by fully exploiting all of the un-

derlying hardware resources.

To analyze the contributions of µLayer’s three optimiza-

tions in speed improvements, we compare how the NN execu-

tion latency changes as the optimizations are incrementally

applied. Figure 17 shows how the latency reduces as we

employ each of the optimizations. The results show that

the amounts of the contributions vary across the NNs and

the SoCs. First, the channel-wise workload distribution con-

tributes the most for AlexNet having only a few, but large

convolutional layers. Second, GoogLeNet benefits the most

from the processor-friendly quantization as it consists of a

large number of convolutional layers with small filter sizes.

Third, the branch distribution further reduces the latency of

GoogLeNet and SqueezeNet v1.1 by exploiting their diver-

gent branches. In summary, the three optimizations exploit

different optimization opportunities, achieving large speed

improvements when utilized as a whole.
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Figure 17. Contribution of µLayer’s optimizations to NN execution latency; normalized to the latency of the complete µLayer.
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Figure 18. Energy consumption of the single-processor mechanism, the layer-to-processor mechanism, and µLayer;

normalized to the energy consumption of the layer-to-processor mechanism.

7.3 Low Energy Consumption

Despite a significant reduction in the NN execution latency,

µLayer should achieve low energy consumption as it is a ma-

jor concern of mobile devices; higher energy consumption

degrades user experience by making the battery drain faster

and demanding users to charge their mobile devices more

often. As µLayer accelerates an NN layer using both the CPU

and the GPU at the same time, dynamic power consump-

tion naturally increases. This may lead to an increase in the

energy consumption if the reduction in the latency is not

large enough. Therefore, for µLayer to be widely deployed,

it should incur low energy consumption.

To evaluate whether µLayer is energy efficient, we mea-

sure the amount of the energy consumed by the mobile SoCs

during the execution of NNs. Figure 18 shows the energy

consumed by the single-processor mechanism, the layer-to-

processor mechanism, and µLayer. Compared to the state-

of-the-art layer-to-processor mechanism, µLayer improves

the energy efficiency by geometric means of 1.26× and 1.34×

on the high-end and the mid-range SoCs, respectively. The

improvements are due to 1) the lower execution latency

by fully exploiting both the CPU and the GPU, and 2) the

reduction in the memory bandwidth consumed by access-

ing data using 8-bit QUInt8 instead of 32-bit F32. Moreover,

the energy efficiency of µLayer is comparable to that of

the single-processor mechanism. The results indicates that

µLayer not only reduces the NN execution latency, but also

achieves high energy efficiency, allowing mobile devices to

easily employ µLayer without major energy consumption

concerns.
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8 Related Work

8.1 Executing NNs with Heterogeneous Processors

Mobile SoCs are equipped with CPUs along with diverse

heterogeneous processors such as GPUs and DSPs. Some

prior studies such as CNNdroid [46] and DeepSense [32]

propose to execute NN layers on the GPU which is known

to achieve higher computational throughput than the CPU.

DeepMon [33] specializes in accelerating continuous vision

applications by using the GPU and by exploiting inter-frame

similarities. RSTensorFlow [12] achieves wide applicability

by utilizing the GPU through Android’s RenderScript, and

MobiRNN [15] accelerates Recurrent Neural Networks using

the GPU. On the other hand, DeepEar [45] exploits DSPs to

enable low-power execution of audio sensing NNs.

Some other studies propose to distribute multiple runs of

an NN to different hardware resources to improve perfor-

mance. Depending on the remaining energy and cash budget

(for using the cloud), MCDNN [28] executes an NN either on

the mobile device or in the cloud. LEO [23] distributes multi-

ple runs of sensing NNs to the CPU, the GPU, the DSP, and

the cloud depending on their availability. Neurosurgeon [41]

executes earlier layers on the mobile device and the follow-

ing layers in the cloud to reduce the latency and the energy

consumption.

Another class of studies distribute the layers of an NN to

the heterogeneous processors to improve performance. For

example, DeepX [43] splits an NN into multiple groups of lay-

ers, apply some optimizations (e.g., pruning) to the groups,

and then distributes the groups to the heterogeneous proces-

sors.Mirhoseini et al. [55, 56] develop anNNwhich optimizes

the layer-to-processor placement to maximize NN execution

performance. The layer-to-processor mapping is supported

by modern NN frameworks such as TensorFlow [11] and

Caffe-HRT [2].

Unfortunately, none of the prior work accelerates a single

NN layer using the heterogeneous processors at the same

time, making their performance get bounded by the single-

processor performance. On the other hand, µLayer fully ex-

ploits all of the heterogeneous processors to achieve signifi-

cant speed improvements over prior studies.

8.2 Reducing the Computational Overheads of NNs

Reducing the computational overheads of NNs has been

an active research area due to the limited computational

throughput of mobile SoCs. First, quantization transforms

the 32-bit floating points of the NNs into fewer-bit data types,

reducing memory footprint sizes and possibly improving

performance by increasing the utilization of the underly-

ing hardware resources. For example, TensorFlow Lite [10]

employs 8-bit linear-quantized integers [37] to improve the

NN execution speed by up to 4× by exploiting CPU’s vec-

tor ALUs. Second, some other studies [27, 50, 53, 54, 69, 70]

seek to reduce the complexity of NNs through compression.

Compressing an NN typically involves the elimination of

near-zero inter-neuron connections which have little im-

pacts on inference accuracy. µLayer is orthogonal to such

optimizations as it does not apply any structural modifica-

tions to a given NN. In fact, the optimizations can be used

with µLayer to achieve lower NN execution latency.

8.3 Neural Processing Units

The steadily increasing demands for higher NN execution

performance have attracted a large interest from the com-

puter architecture community. As a result, the community

has proposed various NN accelerators, typically called Neu-

ral Processing Units (NPUs), which specialize in NN opera-

tions. Examples include the DianNao family [16–18, 20, 52].

Energy-efficient NPUs tailored for mobile devices (e.g., In-

tel Myriad X [58], Arm ML Processor [21], Google’s Edge

TPU [3]) have also been proposed. Now, some recent mobile

SoCs (e.g., HiSilicon Kirin 970 [22], Rockchip RK3399Pro [4])

are equipped with a dedicated NPU which applications can

exploit when executing NNs.

Although our work mainly focuses on CPU-GPU coop-

erative single-layer acceleration, we claim that µLayer can

easily be extended to support NPUs (and also DSPs). First,

the channel-wise workload distribution can be extended to

distribute a layer’s output channels to not only the CPU

and the GPU, but also the NPU. Second, for the NPU, the

processor-friendly quantization can fully exploit the NPU

using an NPU-friendly quantization scheme (e.g., 8-bit lin-

ear quantization for Google’s Tensor Processing Unit [39]).

Third, the branch distribution can benefit from having the

NPU by being able to run more branches in parallel. Accord-

ingly, even in the presence of NPUs, the key ideas of our

work still hold.

8.4 CPU-GPU Cooperative Processing

Outside the context of NN execution, there have been efforts

to utilize both the CPU and the GPU at the same time to

accelerate general-purpose computations. Examples of the

studies on such CPU-GPU cooperative processing include

the Single Kernel Multiple Devices (SKMD) system [48, 49],

Fluidic Kernels [59], and adaptive heterogeneous schedul-

ing [40]. Although the studies also utilize cooperative CPU-

GPU processing, µLayer differs from the studies as it exploits

the unique characteristics of NNs (e.g., the channel-wise

workload distribution, the branch distribution).

9 Conclusion

To fulfill the high performance requirements of real-time

NN-assisted services, mobile devices must fully utilize their

hardware resources to achieve low NN execution latency.

Existing mobile NN frameworks seek to reduce the latency

by employing CPU-friendly optimizations such as vectoriza-

tion and quantization, by utilizing heterogeneous hardware

resources such as GPUs or DSPs, and by distributing layers
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to different hardware resources. Unfortunately, their perfor-

mance gets bounded by the single-processor performance.

In this paper, we aimed at reducing the latency by accel-

erating each NN layer using both the CPU and the GPU

at the same time. Based on the high performance improve-

ment potential of cooperative single-layer execution, we

proposed three mechanisms (i.e., the channel-wise workload

distribution, the processor-friendly quantization, the branch

distribution) which fully utilize the underlying hardware re-

sources. The resulting mobile NN framework, called µLayer,

significantly reduces the latency by up to 69.6% and also

improves the energy efficiency by up to 58.1%.
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